Polygenic risk scores

The growing public interest in genetic risk scores for various health conditions can be harnessed to inspire preventive health action. However, current commercially available genetic risk scores can be deceiving as they do not consider other, easily attainable risk factors, such as sex, BMI, age, smoking habits, parental disease status and physical activity. Recent scientific literature shows that adding these factors can improve PGS based predictions significantly. However, implementation of existing PGS based models that also consider these factors requires reference data based on a specific genotyping chip, which is not always available. In this paper, we offer a method naïve to the genotyping chip used. We train these models using the UK Biobank data and test these externally in the Lifelines cohort. We show improved performance at identifying the 10% most at-risk individuals for type 2 diabetes (T2D) and coronary artery disease (CAD) by including common risk factors. Incidence in the highest risk group increases from 3.0- and 4.0-fold to 5.8 for T2D, when comparing the genetics-based model, common risk factor-based model and combined model, respectively. Similarly, we observe an increase from 2.4- and 3.0-fold to 4.7-fold risk for CAD. As such, we conclude that it is paramount that these additional variables are considered when reporting risk, unlike current practice with current available genetic tests.

 

 

You can read the full paper at https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9941118/pdf/41598_2023_Article_27637.pdf

 

 

 

Room for improvement

Aims/hypothesis: Optimal diabetes care and risk factor management are important to delay micro- and macrovascular complications in individuals with type 1 diabetes (T1D). Ongoing improvement of management strategies requires the evaluation of target achievement and identification of risk factors in individuals who do (or do not) achieve these targets.

Methods: Cross-sectional data were collected from adults with T1D visiting six diabetes centers in the Netherlands in 2018. Targets were defined as glycated hemoglobin (HbA1c) <53 mmol/mol, low-density lipoprotein-cholesterol (LDL-c) <2.6 mmoL/L (no cardiovascular disease [CVD] present) or <1.8 mmoL/L (CVD present), or blood pressure (BP) <140/90 mm Hg. Target achievement was compared for individuals with and without CVD.

Results: Data from 1737 individuals were included. Mean HbA1c was 63 mmol/mol (7.9%), LDL-c was 2.67 mmoL/L, and BP 131/76 mm Hg. In individuals with CVD, 24%, 33%, and 46% achieved HbA1c, LDL-c, and BP targets respectively. In individuals without CVD these percentages were 29%, 54%, and 77%, respectively. Individuals with CVD did not have any significant risk factors for HbA1c, LDL-c, and BP target achievement. In comparison, individuals without CVD were more likely to achieve glycemic targets if they were men and insulin pump users. Smoking, microvascular complications, and the prescription of lipid-lowering and antihypertensive medication were negatively associated with glycemic target achievement. No characteristics were associated with LDL-c target achievement. Microvascular complications and antihypertensive medication prescription were negatively associated with BP target attainment.

Conclusion: Opportunities for improvement of diabetes management exist for the achievement of glycemic, lipid, and BP targets but may differ between individuals with and without CVD.

 

You can read the full article at https://onlinelibrary.wiley.com/doi/10.1111/1753-0407.13368

 

 

Fantasy becomes reality

Fantasie wordt werkelijkheid… introductie van het mylife CamAPS FX systeem in Nederland.

Het totale systeem bestaat -zoals het plaatje aangeeft- uit de myLife YpsoPump insuline pomp, de Dexcom G6 glucose sensor, en het verbindende CamAPS FX software systeem, dat is ontworpen door professor Roman Hovorka, een genie op het gebied van diabetes en closed-loop software.

Kijk hier naar de opnames van dit webinar. De link is: https://www.youtube.com/watch?v=FNzAE-6A1-4

 

Artificial but intelligence ??

Voor het maken van een aantal presentaties heb ik me tot enkele AI websites gewend. Twee AI websites voor het genereren van foto’s worden met nadruk op TikTok en andere media geplugd. “Websites that will change the world.” “Secret websites that feel illegal to know.”

Ik had een paar wensen voor het converteren van tekst in een foto: foto’s van een arts, man of vrouw, in een witte jas met korte mouwen, al dan niet werkend aan een computer. Het ene programma doet het wat beter dan het andere. Beide hebben moeite met de anatomie van de handen en de constructie van zoiets simpels als een stethoscoop. Het 1e programma creëert wel een mooi gezicht, hoewel dit nog niet heel natuurlijk aandoet. Het 2e programma creëert verwrongen gezichten. Een paar resultaten:

Belangrijkste conclusie: AI is nog niet van zulke hoge kwaliteit……